sexta-feira, 28 de junho de 2013

7 Common Myths About Pandemics and New Diseases

Co-authored with Catherine M. Machalaba, MPH
Novel diseases and pandemics have captured our global attention. Yet, for all we hear about them, what do we actually know -- or perhaps more accurately, not know about them? Here we dispel common myths about novel diseases and pandemics.
Myth 1. They're just a public health problem.
Novel diseases and pandemics typically are perceived to fall squarely into the public health realm. Paradoxically, they actually interface with nearly every other sector. For example, they raise major concerns for food production, biosecurity and environmental health. And their implications can be expensive; the costs of SARS to the global economy was estimated by BioERA at >$30-$50 billion, and the past decade of outbreaks has been responsible for hundreds of $US billions in losses.

They also have wide implications for society, livelihoods and productivity, as demonstrated by outbreaks of Marburg hemorrhagic fever (a highly fatal viral disease related to Ebola) that closed mining sites in the Democratic Republic of Congo for five years, markets repeatedly being shutdown in China after outbreaks of SARS and avian influenza, and now the Saudi Arabian government's recent advice to defer pilgrimages for the Hajj partly on the basis of concerns over the spread of the Middle East Respiratory Syndrome. Outbreaks can be highly disruptive to movement of people and goods, often leading to increased regulations and restrictions on trade and travel to reduce the potential for spread.
Myth 2. They're obscure, rare, and have short-term impacts.
While novel disease outbreaks occur infrequently (~3-5 times per year), they appear to be increasing, and they have tremendous impacts at local, regional and global scales. Just because an outbreak starts suddenly, it doesn't mean it always ends rapidly as well; it may re-emerge in humans (as seen with Ebola), emerge in a new location or from a new species, or become established as did the highly pathogenic H5N1 influenza (Bird Flu).

Most of the infectious human diseases today in fact emerged from animals at some point in time; and they now account for over one million deaths and more than one billion illnesses annually. And what about those cases ubiquitously diagnosed as "fever", "encephalitis", "pneumonia", or worse, "unknown"? There's a chance some are "novel" diseases that we just haven't had the tools to detect.
Myth 3. Our doctors already know all the infectious diseases.
No one knows all of the infectious diseases our planet harbors. While medical science has named >1,400 infectious disease-causing agents, this is only the tip of the iceberg. Over 60 percent of known infectious human diseases are shared with animals so there's potential for many more to be lurking in the wild. Encouragingly, our colleagues' work assessing viral diseases suggests there's not an infinite number of undiscovered viruses lurking in mammals... but we still have long way to go before we have a handle on what's out there.

Disease detection isn't as straightforward as we'd like. There are disincentives to viral detection, such as impacts on tourism and trade. We get it. If your lovely tourist revenue-generating location harbored a dangerous pathogen with the tiniest of possibility of spread to humans, would you want it hysterically broadcast to the world? Neither would we. But we do need to assess risks to know how to manage them, and we need to be comfortable with learning those risks, because not knowing sure isn't protecting us.
Additionally, overall investments in research are volatile, especially in light of government funding challenges. And there are persistent disparities around access to funding. Many new diseases arise in developing countries that do not have the resources for early detection, prevention or research, thus stalling opportunities for proactive discovery and intervention.
Myth 4. Our international organizations are protecting all of us.
Not so much. International organizations such as the U.N. World Health Organization and the Food and Agriculture Organization, as well as the World Organisation for Animal Health, do play extremely important roles in disease prevention and control. They can help coordinate efforts and provide guidance on pandemic prevention and response and may sanction countries for violating disease control efforts, but ultimately only sovereign nations have the authority to enact action on the ground. And even our international organizations have limited resources. A recent article in The Economist cited WHO's annual influenza budget at only $7.7m, a mere one-third of New York City's budget for public health emergencies.

Myth 5. We have the infrastructure in place to detect and effectively respond to them. 
Au contraire. In fact, we barely even have the capacity to detect and respond to common diseases that we all know about, much less novel diseases. With the public health surveillance capacity and diagnostic technologies we have today, would we have detected the HIV-transmitting pathogen in non-human primates before it was transmitted to humans? Probably not, and that's because we simply haven't been looking for potential viruses in most places.

So what do we need to create infrastructure for detecting, responding to, and ideally, preventing novel diseases and pandemics? A 2009 World Bank/UN study estimated that an over $2 billion/year investment was needed through 2020 to get nations up to speed on diseases commonly shared between animals and people. That price tag seems steep, but pales in comparison to the costs of some recent outbreaks (see Myth 1). And there are potential cost-savings from tackling novel diseases in tandem across sectors through a "One Health" approach that considers links between humans, animals and the environment.
Myth 6. Disease emergence is inevitable, and we can't do anything about it.
And now for some (partially) good news. While spontaneous viral mutations/reassortment can and do occur (such as with the new H7N9 influenza), the root causes and spread of novel diseases isn't so spontaneous. These diseases don't just appear out of the blue without an opportunity existing for them to do so. The problem is, the human species is creating those opportunities far and wide, and increasingly so. We're seeing that land-use and food production changes, trade and travel, climate change, and other human-linked pressures are driving disease emergence, mainly because these put us into increased and new contacts with wildlife and our activities disturb ecosystem dynamics.

Since we have an idea of what's driving them, that's one piece of the puzzle that allows us to put prevention measures into place. Another is where to look for them before outbreaks occur, and in what species. USAID's Emerging Pandemic Threats program is currently investing in integrated disease surveillance and detection programs in developing countries that are "hotspots" for disease emergence. This will help us to find new viruses, learn more about their risks to humans, and work with local governments to take actions to reduce risks of emergence. But we're not going to find viruses where we're not looking- which is still the case in much of the world.

Myth 7. Globalization is only bad news for novel disease transmission and spread.
And for more good news... While there is potential for rapid spread around the world through trade and travel (as demonstrated by the scenario in the film Contagion), globalization can also enable rapid diagnostics and global response. Our connectedness is allowing us all to take an active role, whether we want to or not, in disease outbreaks. Want to find out what diseases are being reported in your backyard or across the earth? Tools such as HealthMap.org and the Program for Monitoring Emerging Diseases track infectious disease outbreaks globally in a transparent way, helping us to more quickly identify disease trends and pair resources with public health needs. The former even allows for social reporting of disease occurrence with programs like "Flu Near You."

As global citizens with concerns over novel diseases and pandemics, we can encourage our policy makers to do a better job of prioritizing upstream prevention efforts and our corporations to proactively consider risks when planning their operations and be accountable for damages from outbreaks. We can also participate directly by reducing our ecological "footprint" which contributes to the underlying "drivers" of disease emergence.

quinta-feira, 27 de junho de 2013

Rússia autoriza compra de carne de cavalo de dois estabelecimentos brasileiros

A expectativa é que este ato aumente as perspectivas de crescimento para o mercado de carne equina

O serviço sanitário russo autorizou a exportação de carne equina de dois frigoríficos localizados no Rio Grande do Sul e Paraná. Trata-se de uma iniciativa promissora na medida em que se abre um novo mercado. Não há registro de exportações de carne equina para o mercado russo nos últimos 15 anos.
Os frigoríficos habilitados para exportar carne equina foram: SIF 3877 (Foresta Ltda.) e SIF 55 (Oregon S. A.). Os serviços veterinários de Belarus e do Cazaquistão também tomaram a mesma decisão, autorizando-os a exportar seus produtos para o território da União Aduaneira.
Em 2012, o Brasil exportou 2,3 mil toneladas de carne de equídeo, resultando em US$ 6,7 milhões em vendas para Bélgica (principal comprador, com US$ 4,34 milhões), África do Sul, Espanha, Finlândia, Itália, Japão e Países Baixos.


Mais informações para a imprensa:

Assessoria de Comunicação Social do Mapa
Stéfane Maia Rech
(61) 3218-3086
stefane.rech@agricultura.gov.br
http://www.agricultura.gov.br/comunicacao/noticias/2013/06/russia-autoriza-compra-de-carne-de-cavalo-de-dois-estabelecimentos-brasileiros

Pesquisadores brasileiros criam laboratório móvel para exames de sanidade animal

Unidades serão enviadas para Guiné Equatorial, na África. Baixo custo dos laboratórios já chama a atenção para o uso no Brasil, principalmente em regiões distantes

Pesquisadores brasileiros lançaram um laboratório para exames de sanidade animal que pode ser transportado com facilidade. As unidades vão ser enviadas para a Guiné Equatorial, no Continente Africano, onde devem ser estudadas doenças como a aftosa.
Os laboratórios móveis foram montados a partir de um contêiner industrial. Possuem sistema de pureza do ar e também um sistema que impede a destruição através do fogo.
Com estas unidades, os médicos veterinários e técnicos vão detectar as principais doenças que comprometem os sistemas de produção de proteína na Guiné Equatorial e desenvolver a sanidade dos animais no país africano, além capacitar técnicos locais. Os laboratórios móveis podem ser transportados como carga convencional, em navios ou caminhões, o que facilita o acesso a regiões mais distantes e com poucos recursos.
A médica veterinária Larissa Cardoso Duarte está no time de pesquisadores que embarcam no projeto. Ela foi uma das selecionadas entre mais de 300 candidatos. Dez profissionais viajarão para o país africano.
A construção do laboratório foi feita pelo Instituto Biológico de São Paulo, que também disponibilizou os profissionais. O projeto faz parte de ações sociais de uma empresa privada brasileira, responsável pela construção de estradas na Guiné Equatorial, e que mantém as pesquisas.
As unidades podem ser construídas com baixo orçamento, o que já chama a atenção para o uso no Brasil, principalmente em regiões mais distantes, como forma de evitar o transporte de animais contaminados.
– O Ministério da Agricultura já sinalizou interesse pelo projeto, e poderá começar a produzir para usar em várias regiões do Brasil, evitando o transporte de vírus em animais – diz Ricardo Spacagna Jordão – coordenador do projeto de laboratórios móveis.


CANAL RURAL

Espirito Santo: Alerta para a incidência de mormo em equídeos

Após se manter como o único Estado da região Sudeste sem a presença de mormo, o Espírito Santo registra os primeiros casos da doença. Em abril deste ano, uma égua do Regimento de Polícia Montada do Estado apresentou sintomas da enfermidade e, junto com mais 11 animais, foi isolada para análise. Do total, dois animais já foram sacrificados devido à constatação oficial da doença, enquanto o restante está ainda sob observação. Todos os animais do regimento estão interditados.
O Ministério da Agricultura e o Idaf foram imediatamente acionados para poder realizar a coleta de material para exame e investigar como a doença entrou no Estado.
Como medida preventiva, o Idaf elaborou uma série de normas para evitar a propagação da doença. O produtor rural que deseja transportar equídeos precisa portar o GTA (Guia de Trânsito Animal) e o exame negativo de Anemia Infecciosa Equina, que tem validade de 60 dias. Para o transporte para eventos agropecuários, os animais devem apresentar vacinação contra influenza ou atestado de não ocorrência da enfermidade, além de via original de resultado negativo de exame de mormo, que tem validade de 60 dias.
O médico veterinário e coordenador de sanidade animal da Faes, Antonio Carlos de Souza, chama a atenção para a necessidade de controle e prevenção da doença. Evitar a doença é uma parceria entre produtor rural e Idaf. Os órgãos competentes estão em alerta, mas é extremamente importante que o produtor acione o Idaf e isole os animais suspeitos para que sejam feitos os exames e os registros”, aponta o coordenador.
O produtor rural que possui equídeos na propriedade deve manter a limpeza e desinfecção das instalações, equipamentos e utensílios com hipoclorito de sódio a 1% ou desinfetantes a base de iodo a 70%.
Conheça a doença
O mormo é uma doença infectocontagiosa sem cura causada por uma bactéria que acomete, principalmente, os equídeos. Nestes animais, as chances de letalidade abrangem 95% dos casos, por isso, é recomendada a eutanásia dos positivos.
A transmissão acontece pelo contato direto com animais doentes, ingestão de água ou alimentos contaminados, contato com lesão de pele decorrentes da doença, além de contato com descargas feitas pelas vias respiratórias. A doença apresenta sintomas parecidos com o da gripe equina, podendo dificultar o diagnóstico. O animal doente apresenta emagrecimentoprogressivo, perda de apetite e peso, corrimento nasal viscoso com manchas de sangue, surgimento de nódulos na parte inferior do abdômen, além de lesões em torno das narinas. O produtor rural que tiver algum animal com suspeita da doença na propriedade deve notificar o Idaf.

Espírito Santo é destaque nacional no trabalho de vigilância contra a raiva em herbívoros

   O Instituto de Defesa Agropecuária e Florestal do Espírito Santo (Idaf) recebeu, esta semana, um comunicado do Ministério da Agricultura informando os bons resultados do Estado na execução do Programa Nacional de Controle da Raiva em Herbívoros (PNCRH), coordenado pelo Instituto. A quantidade de exames realizados no Estado para diagnóstico da doença em comparação ao tamanho do rebanho obteve o melhor índice do país. 

   O Idaf acompanha os casos com suspeita de raiva,  realizando o exame para confirmação da doença. O Instituto conta com o único laboratório do Espírito Santo que realiza diagnóstico da raiva. Os exames são gratuitos e atendem a todos os municípios capixabas. Em 2012, foram realizados 165 exames em herbívoros, sendo 89 positivos. Os exames permitem que o Idaf identifique locais de maior incidência da doença e sua intensidade para que, assim, tenha condições de direcionar as ações de vigilância. 
   O médico veterinário do Idaf, Luiz Carlos Barboza Tavares, coordenador do PNCRH no Espírito Santo, explica que os bons resultados refletem o comprometimento do Instituto com o controle da doença. "Embora o Estado tenha uma quantidade relativamente pequena de bovinos se comparado a outros Estados, o índice de realização de exames é proporcionalmente superior. Reconhecemos a importância de manter um trabalho de vigilância epidemiológica constante, uma vez que o programa foca no controle da doença", diz. 
   Luiz Carlos aproveita para alertar os produtores quanto à importância de comunicar o Idaf caso haja ataque de morcegos no rebanho (os hematófagos veiculam o vírus da raiva) ou suspeita da doença nos herbívoros. "Nessas situações, o animal deve ser isolado, evitando que seja manipulado. Outra questão importante é a vacinação anual do rebanho. Em locais de maior incidência de raiva, a orientação é que a vacina seja aplicada duas vezes ao ano", orienta o médico veterinário.

Controle de morcegos
   Outra ação destacada pelo Ministério da Agricultura é o controle populacional dos morcegos hematófagos. Em 2012, a equipe de captura do Idaf realizou a vistoria de 524 abrigos de morcego no Espírito Santo (70% a mais que o realizado em 2011), ficando atrás apenas de Estados como São Paulo, Rio Grande do Sul e Minas Gerais.    Esse trabalho é feito com a instalação de redes em lugares como grutas, cavernas e currais. Após a captura, com equipamentos apropriados para a atividade, é aplicada no dorso dos hematófagos uma pasta com efeito hemorrágico, chamada vampiricida. Como os morcegos têm o hábito de lamberem-se mutuamente, um animal tratado com a pasta provoca a morte de aproximadamente 20 outros membros da colônia, realizando o controle populacional e minimizando o risco de disseminação da doença. 


Informações à Imprensa: Assessoria de Comunicação/Idaf Francine Castro Tel.: (27) 3636-3774/ 9946-7504 comunicacao@idaf.es.gov.br www.idaf.es.gov.br

Mapa lança cartilha eletrônica para prevenção da gripe aviária

Viajantes e produtores brasileiros são alvo da campanha

Para alertar aos passageiros em aeroportos e aos produtores brasileiros sobre os riscos da inflenza aviária, o Ministério da Agricultura, Pecuária e Abastecimento (Mapa) lançou duas cartilhas em formato eletrônico (clique aqui e aqui para baixar o material). O objetivo principal da ação é manter a produção aviária brasileira livre da doença.
Desenvolvido pelo Departamento de Saúde Animal do Mapa, o material contém informações sobre sinais da doença entre as aves. Entre eles, estão o aumento repentino da mortalidade das aves em um período de 72 horas e mudanças de comportamento, como redução no consumo de ração e andar “cambaleante” das aves.
O vírus se propaga a partir de contato prolongado com animais infectados, suas secreções ou excreções. Seres humanos podem eventualmente ser afetados pelo vírus, mas a transmissão de uma pessoa para outra ainda não foi comprovada. O vírus também pode ser difundido por meio de equipamentos, vestimentas, ração, água e outros objetos contaminados, podendo ser disseminado a aviários não infectados.
Em caso de suspeitas, o produtor deve isolar a área e procurar um médico veterinário do Serviço Estadual de Defesa Sanitária Animal ou da Superintendência Federal da Agricultura, Pecuária e Abastecimento do seu estado. Outra forma é entrar em contato com a ouvidoria do Ministério da Agricultura pelo telefone 0800 704 1995.
O Brasil é o maior exportador mundial de carne de frango. Em 2012, foram vendidos US$ 7,2 bilhões do produto para mais de 140 países.
Mais informações para a imprensa:
Assessoria de Comunicação Social
(61) 3218-3089/2203
Carlos Mota
carlos.mnascimento@agricultura.gov.br

quarta-feira, 26 de junho de 2013

Novel Bat-borne Hantavirus, Vietnam


To the Editor: Compelling evidence of genetically distinct hantaviruses (family Bunyaviridae) in multiple species of shrews and moles (order Soricomorpha, families Soricidae and Talpidae) across 4 continents (17) suggests that soricomorphs, rather than rodents (order Rodentia, familiesMuridae and Cricetidae), might be the primordial hosts (6,7). Recently, the host range of hantaviruses has been further expanded by the discovery that insectivorous bats (order Chiroptera) also serve as reservoirs (8,9). Conjecturing that Mouyassué virus in the banana pipistrelle (Neoromicia nanus) in Côte d’Ivoire (8) and Magboi virus (MGBV) in the hairy split-faced bat (Nycteris hispida) in Sierra Leone (9) represent a much broader geographic distribution of bat-borne hantaviruses, we analyzed tissues from bats captured in Mongolia and Vietnam.
Total RNA was extracted from 51 lung tissues, collected in RNAlater Stabilization Reagent (QIAGEN, Valencia, CA, USA), from insectivorous bats, representing 7 genera and 12 species, captured in Mongolia and Vietnam. cDNA was then prepared by using PrimeScript II 1st strand cDNA Synthesis Kit (Takara Bio, Otsu, Shiga, Japan) for reverse transcription PCR (RT-PCR), and using oligonucleotide primers previously designed for amplification of soricid- and talpid-borne hantaviruses (17).
A novel hantavirus, designated Xuan Son virus (XSV), was detected in 1 of 5 Pomona roundleaf bats (Hipposideros pomona) by using a heminested large (L)–segment primer set (outer: HNL-2111F, 5′-CARTCWACWGTIGGIGCIAGTGG-3′, and HAN-L-R1, 5′-AACCADTCWGTYCCRTCATC-3′; inner: HNL-2111F and HAN-L-R2, 5′-GCRTCRTCWGARTGRTGDGCAA-3′) and a nested small (S)–segment primer set (outer: OSM55F, 5′-TAGTAGTAGACTCC-3′, and XSV-S6R, 5′-AGITCIGGRTCCATRTCRTCICC-3′; inner: Cro-2F, 5′-AGYCCIGTIATGRGWGTIRTYGG-3′, and JJUVS-1233R, 5′-TCACCMAGRTGRAAGTGRTCIAC-3. The bat was captured during July 2012 in Xuan Son National Park, a nature reserve in Thanh Sơn District, Phu Tho Province, ≈100 km west of Hanoi (21°07′26.75′′N, 104°57′29.98′′E).
For confirmation, RNA extraction and RT-PCR were performed independently in a laboratory in which hantaviruses had never been handled. After initial detection, the L-segment sequence was extended by using another primer set (PHL-173F: 5′-GATWAAGCATGAYTGGTCTGA-3′; and TNL-5084R: 5′-GATCCTGAARTACAATGTGCTGG-3′). To calculate the number of virus copies in tissues by real-time RT-PCR, we used a virus-specific primer set (XSV-F: 5′-GTTGCACAGCTTGGTATTGG-3′; and XSV-R: 5′-TTAGCACCCAAACCTCCAAG-3′) and probe (XSV-Probe: 5′-ACAGCTCCTGGCATGGTAAATTCTCC-3′).
Pairwise alignment and comparison (with ClustalW, www.clustal.org) of a 4,582-nt (1,527 aa) region of the RNA-dependent RNA polymerase–encoding L segment indicated sequence similarities of 71.4%–71.5% and 75.9%–78.7% at the nucleotide and amino acid levels, respectively, between XSV and Mouyassué virus and MGBV. Sequence analysis of a 499-nt (166 aa) region of the nucleocapsid-encoding S segment showed that XSV differed by 42.8%–58.3% from representative hantaviruses harbored by rodents and most soricomorphs. XSV sequences were identical in lung, liver, kidney, and spleen; and the highest number of virus copies (7.6 × 101) was in lung tissue, determined by real-time RT-PCR. No additional hantavirus-infected Pomona roundleaf bats were found by RT-PCR that used XSV-specific primers.
Figure
Thumbnail of Phylogenetic trees, based on 499-nt and 4,582-nt regions of the small (S) and large (L) genomic segments, respectively, of Xuan Son virus (XSV VN1982B4) (GenBank accession nos. S: KC688335, L: JX912953), generated by the maximum-likelihood and Bayesian Markov chain Monte Carlo estimation methods, under the GTR+I+Γ model of evolution. Because tree topologies were similar when RAxML and MrBayes were used, the tree generated by MrBayes was displayed. The phylogenetic position of XSV is
Figure. . Phylogenetic trees, based on 499-nt and 4,582-nt regions of the small (S) and large (L) genomic segments, respectively, of Xuan Son virus (XSV VN1982B4) (GenBank accession nos. S: KC688335, L:...
Phylogenetic analyses was performed with maximum-likelihood and Bayesian methods, and we used the GTR+I+Γ model of evolution, as selected by the hierarchical likelihood-ratio test in MrModeltest version 2.3 and jModelTest version 0.1 (10), partitioned by codon position. Results indicated 4 distinct phylogroups, with XSV sharing a common ancestry with MGBV (Figure). Similar topologies, supported by high bootstrap (>70%) and posterior node (>0.70) probabilities, were consistently derived when various algorithms and different taxa and combinations of taxa were used. Moreover, as we reported previously, the incongruence between some hantaviruses and their reservoir hosts might be indicative of host-switching events (57).
The striking sequence divergence of XSV presented considerable challenges for designing suitable primers for RT-PCR and sequencing. Also, sequencing efforts were constrained by the limited availability of tissues and concurrent virus isolation attempts. Consequently, we were unable to obtain the full-length sequence of XSV. Similarly, the inability to detect hantavirus RNA in tissues from other species of bats in this study might be attributed to several factors, including the highly focal nature of hantavirus infection, small sample sizes of bats of any given species, primer mismatches, and suboptimal cycling conditions.
Bats of the genus Hipposideros, family Hipposideridae, are among the most speciose insectivorous bats; ≈70 species are distributed across Africa, Europe, Asia, and Australia. Pomona roundleaf bats are frequently found in or near limestone or sandstone caves. Their colony sizes vary from few to many hundreds of individuals. The vast geographic distribution of the Pomona roundleaf bat throughout Vietnam and in Bangladesh, Cambodia, China, India, Laos, Malaysia, Myanmar, Nepal, and Thailand, provides opportunities to ascertain the genetic diversity and phylogeography of XSV and XSV-related hantaviruses. In this regard, although hantavirus RNA was not detected in archival tissues from bats of ≈20 genera, including several other Hipposideros species (8,9), many more genetically divergent hantavirus species are probably harbored by insectivorous bats. Not all orphan viruses warrant intensive study at the time of their discovery. However, insights into the ecology and transmission dynamics of newfound bat-borne hantaviruses might prepare us to more rapidly diagnose future outbreaks caused by emerging hantaviruses.
Satoru AraiComments to Author , Son Truong Nguyen, Bazartseren Boldgiv, Dai Fukui, Kazuko Araki, Can Ngoc Dang, Satoshi D. Ohdachi, Nghia Xuan Nguyen, Tien Duc Pham, Bazartseren Boldbaatar, Hiroshi Satoh, Yasuhiro Yoshikawa, Shigeru Morikawa, Keiko Tanaka-Taya, Richard Yanagihara, and Kazunori Oishi
Author affiliations: National Institute of Infectious Diseases, Tokyo, Japan (S. Arai, K. Araki, H. Satoh, S. Morikawa, K. Tanaka-Taya, K. Oishi)Institute of Ecology and Biological Resources, Hanoi, Vietnam (S.T. Nguyen, C.N. Dang, N.X. Nguyen, T.D. Pham)National University of Mongolia, Ulaanbaatar, Mongolia (B. Boldgiv)National Institute of Biological Resources, Seoul, South Korea (D. Fukui)Hokkaido University, Sapporo, Japan (S.D. Ohdachi)Institute of Veterinary Medicine, Ulaanbaatar (B. Boldbaatar); Chiba Institute of Science, Chiba, Japan (Y. Yoshikawa)University of Hawaii at Manoa, Honolulu, Hawaii, USA (R. Yanagihara)

Acknowledgments

We thank Hitoshi Suzuki, Shinichiro Kawada, and Kimiyuki Tsuchiya for supporting field investigations and offering helpful suggestions.
This work was supported in part by a grant-in-aid from the Ministry of Health, Labor and Welfare of Japan (Research on Emerging and Re-emerging Infectious Diseases, Health Science Research Grants), the Japan Society for the Promotion of Science (24405045), and the National Foundation for Science and Technology Development of Vietnam (106.11-2012.02).

References

  1. Klempa B, Fichet-Calvet E, Lecompte E, Auste B, Aniskin V, Meisel H, Novel hantavirus sequences in shrew, Guinea. Emerg Infect Dis. 2007;13:5202. 
    DOIExternal Web Site IconPubMedExternal Web Site Icon
  2. Arai S, Song J-W, Sumibcay L, Bennett SN, Nerurkar VR, Parmenter C, Hantavirus in northern short-tailed shrew, United States. Emerg Infect Dis. 2007;13:14203. 
    DOIExternal Web Site IconPubMedExternal Web Site Icon
  3. Song J-W, Kang HJ, Song KJ, Truong TT, Bennett SN, Arai S, Newfound hantavirus in Chinese mole shrew, Vietnam. Emerg Infect Dis. 2007;13:17847. 
    DOIExternal Web Site IconPubMedExternal Web Site Icon
  4. Song J-W, Kang HJ, Gu SH, Moon SS, Bennett SN, Song KJ, Characterization of Imjin virus, a newly isolated hantavirus from the Ussuri white-toothed shrew (Crocidura lasiura). J Virol. 2009;83:618491. 
    DOIExternal Web Site IconPubMedExternal Web Site Icon
  5. Arai S, Ohdachi SD, Asakawa M, Kang HJ, Mocz G, Arikawa J, Molecular phylogeny of a newfound hantavirus in the Japanese shrew mole (Urotrichus talpoides). Proc Natl Acad Sci U S A. 2008;105:16296301. 
    DOIExternal Web Site IconPubMedExternal Web Site Icon
  6. Kang HJ, Bennett SN, Sumibcay L, Arai S, Hope AG, Mocz G, Evolutionary insights from a genetically divergent hantavirus harbored by the European common mole (Talpa europaea). PLoS ONE. 2009;4:e6149. 
    DOIExternal Web Site IconPubMedExternal Web Site Icon
  7. Kang HJ, Bennett SN, Hope AG, Cook JA, Yanagihara R. Shared ancestry between a mole-borne hantavirus and hantaviruses harbored by cricetid rodents. J Virol.2011;85:7496503. 
    DOIExternal Web Site IconPubMedExternal Web Site Icon
  8. Sumibcay L, Kadjo B, Gu SH, Kang HJ, Lim BK, Cook JA, Divergent lineage of a novel hantavirus in the banana pipistrelle (Neoromicia nanus) in Côte d’Ivoire. Virol J.2012;9:34. 
    DOIExternal Web Site IconPubMedExternal Web Site Icon
  9. Weiss S, Witkowski PT, Auste B, Nowak K, Weber N, Fahr J, Hantavirus in bat, Sierra Leone. Emerg Infect Dis. 2012;18:15961. 
    DOIExternal Web Site IconPubMedExternal Web Site Icon
  10. Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008;25:12536. 
    DOIExternal Web Site IconPubMedExternal Web Site Icon

Figure

Suggested citation for this article: Arai S, Nguyen ST, Boldgiv B, Fukui D, Araki K, Dang CN, et al. Novel bat-borne hantavirus, Vietnam [letter]. Emerg Infect Dis [Internet]. 2013 Jul [date cited].http://dx.doi.org/10.3201/eid1907.121549External Web Site Icon

DOI: 10.3201/eid1907.121549

http://wwwnc.cdc.gov/eid/article/19/7/12-1549_article.htm